

Proposed ExoMars 2016 Trace Gas Orbiter Science Mission Overview

O. Witasse, European Space Agency
M. Allen, Jet Propulsion Laboratory, California Institute of
Technology

- ESA and NASA have agreed to embark on a joint Mars robotic exploration programme:
 - → Initial missions have been proposed for the 2016 and 2018 launch opportunities;
 - → Missions for 2020 and beyond are in a planning stage;
 - → The joint programme's ultimate objective would be an international Mars Sample Return mission.

2016 Proposed ESA-led mission

Baseline launch Vehicle: NASA – Atlas V 431

Orbiter: **ESA**

Payload: NASA-ESA

Science Ops: ESOC MOC; NASA-JPL SRA/SOC

Telecom: NASA-ESA

EDL Demo: ESA

2018 Proposed NASA-led mission

Baseline Launch Vehicle: NASA – Atlas V 531

Cruise & EDL: NASA Rover 1: ESA Rover 2: NASA

©esa ™ Proposed Mission Objectives

Artist's Rendering

TECHNOLOGY OBJECTIVE

2016

⇒Entry, Descent, and Landing (EDL) of a payload on the surface of Mars.

SCIENTIFIC OBJECTIVE

→ To study Martian atmospheric trace gases and their sources.

Pre-decisional – for Planning and Discussion Purposes Only

PRIORITISED GOALS

- Detect a broad suit of atmospheric trace gases and key isotopes with high sensitivity:
- 2. Map their spatial and temporal variability with high sensitivity:
- Determine basic atmospheric state by characterising P, T, winds, dust and water aerosol circulation patterns

4. Map their spatial and temporal variability with high sensitivity (≤ ppb):

INSTRUMENTS

E

MATMOS (ppt)

NOMAD (10⁻¹ ppb)

EMCS (P, T, dust, ices, H₂O)

MAGIE (Full hemisphere WAC)

HiSCI (HRC 2 m/pixel)

Excellent coverage of high-priority objectives.

USA, CAN

H/W

Science

B, E, I, UK USA, CAN

USA, UK

USA, UK B, F, RUS

USA, CH UK, I, D, F

Projected Mission parameters

Orbital inclination: 74° ±10°

Orbital period: 2 hours

Altitude: 350-400 km

Duration: 1 Martian year

Observation modes

- Solar occultation
- Nadir
- Limb

Organisation of the project

Pre-decisional – for Planning and Discussion Purposes Only

Proposed Timeline

7-27 Jan 2016	Proposed Launch window
16 Oct 2016	Descent Module Release
19 Oct 2016	Mars Orbit Insertion, EDL Relay Coverage and
	EDM Landing
27 Oct 2016	End of surface operations and Relay
	Coverage
29 Oct 2016	Inclination change to Science Orbit
31 Oct 2016	Apocenter reduction
8 Nov 2016	Start of Aerobraking Phase
Spring 2017	End of Aerobraking Phase, start of the science!
11 Jul-11 Aug 2017	Superior Conjunction
14 Jan 2019	Start of Data Relay Phase for the two rovers

Guest investigator and IDS

As for many missions/project, one could expect to broaden the mission community by releasing a call for

Guest Investigator

and

Inter-Disciplinary Scientist

a few years before launch.

Concluding remarks

Pre-decisional – for Planning and Discussion Purposes Only